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Abstract
In this paper, we give an overview of the state of the art in calculations of the electronic band
structure and absorption spectra of water. After an introduction to the main theoretical and
computational schemes used, we present results for the electronic and optical excitations of
water. We focus mainly on liquid water, but spectroscopic properties of ice and vapor phase are
also described. The applicability and the accuracy of first-principles methods are discussed, and
results are critically presented.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Water is the most common liquid substance on the Earth’s
surface. Its crucial involvement in many fundamental
processes, in particular, the development of life, makes liquid

water one of the most intriguing and extensively studied
systems from both a theoretical and experimental point of view.
Although the isolated in vacuo molecule of water is a very
simple system, many basic aspects of this substance, even its
structure in the liquid phase, are still subject to debate [1–15].
In the last twenty years of the last century, different theoretical
studies investigated the structure and dynamics of liquid water
and ions derived from its auto-protolysis or from photo-
dissociation, building up reliable models able to shed light on
quantities like neutron diffraction, diffusion coefficients and
viscosity [16–26]. Lots of theoretical works have also focused
on the roto-vibrational excitations and on the stretching of
the OH bond for small water clusters [27–38], in liquid
water [21], for the water–hydroxyl complex [39–43] and for
the hydronium–water complex [20, 44].

The electronic properties of water as a solvent are
extremely interesting since water can influence many
electronic events (electron transfer, photo-excitation) of solute
molecules by its dielectric response [45, 46] or by actively
participating in electronic processes, i.e. in electron-transfer
phenomena at biological interfaces [47].

Despite some pioneering studies [22, 48–50], the high
computational cost needed to address the modeling of a
disordered system such as a liquid substance limited, in those
years, the studies of the electronic structures and properties to
the gaseous phase [51, 52] or to crystalline ice [53, 54].

In the present decade, aided by the rapid increase in
computational power, a series of theoretical works on the
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electronic properties of liquid water have appeared and will be
discussed in the following sections.

The main difficulty in producing reliable theoretical
predictions of the electronic properties of water lies in the
necessary compromise between the level of accuracy at which
the system can be described and the thorough sampling of
the phase-space, as required for converged computational
quantities.

Authors of published works on the subject have profited
from three possible methodologies. The first choice lies
in sampling structures at a lower level (e.g. molecular
mechanics), and then performing high level single-point
electronic structure calculations on them. The second
possibility is to use hybrid Hamiltonians (usually referred to
as QM/MM schemes), where only a portion of the system,
typically a single water molecule, is described at the quantum
level, while the rest is treated at a molecular mechanics level.
The third kind of calculation present in the literature concerns
first-principles molecular dynamics, where the full system,
including its electronic degrees of freedom, undergoes time-
evolution.

In the present paper, after a brief introduction to the
various methods, we shall give an overview of the state of the
art in the subject, highlighting some of the major results that
have been achieved by the community in ground state response
properties (polarizability tensors, dielectric constants), and
excited state calculations. However, this work does not
intend to represent an exhaustive review of the subject, as an
enormous range of material and open questions remain.

2. Methods

Liquid water is characterized by strong dipolar interactions and
by a network of hydrogen bonds; hence, a correct description
of its electronic structure requires methods able to accurately
account for long-range polarization and short-range correlation
effects.

The general problem of n electrons interacting in
the presence of N nuclei, within the Born–Oppenheimer
approximation [55], takes the form:

H�({r}) = E�({r}) (1)

where �({r}) is the electronic wavefunction and H is the
electronic Hamiltonian (in atomic units):

H = −1

2

∑

i

∇2
ri

−
∑

i,I

Z I

|ri − RI | + 1

2

∑

i �= j

1

|ri − r j |
= T + Vext + Ve−e. (2)

Evaluation of the exact eigenvalues and eigenstates of
such a Hamiltonian is too expensive a task for polyatomic
molecular systems, and therefore it is required to introduce
further approximations in order to obtain some knowledge
about these many-body problems.

Various methods address the problem through different
approaches: by reducing the problem to the study of
single-particle Hamiltonians, as in Hartree [56] and Hartree–
Fock [57] methods, or by exploiting the variational principle

with more complicated wavefunction sets, or by focusing
attention on the electronic density instead of the many-
body wavefunction, as in density functional theory and time-
dependent density functional theory.

An additional problem regarding the calculations of
(excited state) properties of water lies in its liquid nature.
Several strategies have been considered to simplify the study
of disordered systems: use of clusters of increasing size to
model the liquid, ‘mean-field’ approaches (implicit solvent,
e.g. dielectric continuum), use of periodically repeated small
unit cells, and hybrid QM/MM approaches, which use different
combinations of quantum and classical methods to describe the
two subsystems.

2.1. Wavefunction based methods

Several methods try to solve the electronic problem
presented by equation (1) by choosing suitable approximate
wavefunctions. The simplest ansatz for �({r}) is the Hartree–
Fock (HF) determinant,

� ≈ �0 = Det[ϕ(1)ϕ(2) · · ·ϕ(n)], (3)

where the single-particle orbitals ϕ(i) are optimized altogether
through an iterative self-consistent procedure. This mean-field
solution does not take into account electronic correlation and
it is usually used just as a starting point for more accurate
calculations. Therefore, published works that have made use
of wavefunction based methods are typically based on Møller–
Plessett perturbation series (MP2, MP4), on configuration
interaction (CI), or on coupled-cluster (CC) theory. The
general theory behind such methods is widely described in
text-books of quantum chemistry (see for example [58]), and
therefore is just briefly recalled here.

2.1.1. Configuration interaction. The most straightforward
method for improving the HF solution is to build a series
of Slater determinants where not only the n lowest energy
(occupied) ϕ are used, but virtual (unoccupied) orbitals are also
included. In this way, the solution to equation (1) reads:

� = t0�0 +
occ∑

i

vir∑

a

ta
i �

a
i +

occ∑

i< j

vir∑

a<b

tab
i j �

ab
i j + · · · (4)

where �a
i represents all possible singly excited determinants,

that is, a Slater determinant obtained by substituting one
ϕ in the HF determinant by a virtual one; �ab

i j represents
all possible doubly excited determinants; and so on. The
various ti coefficients are then optimized according to the
variational principle. This method is known as configuration
interaction [59] (CI). The expansion in equation (4) (known
as the full-CI solution) is not affordable from a computational
point of view, and therefore truncated CI methods have to
be applied. The most drastic simplification implies taking
only single excitations (CIS) into account. In fact, for
the variational properties of the HF determinant, the matrix
element 〈�0|H |�a

i 〉 is zero, and therefore, such a truncation
cannot improve the ground state, while it may be used for
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approximate excited state calculations. Methods including
further excitations take their name accordingly (CISD: CI with
single and double excitations; CISDT: CI with single, double
and triple excitations, etc).

2.1.2. Multiconfiguration methods. In multiconfigurational
self-consistent field (MCSCF) [60] approaches, not only are
the coefficients in the expansion of equation (4) optimized, but
also the single-particle orbitals. The major drawback of such a
technique is that stationary points of the variational procedure
are problematic, since convergence to local maxima or saddle
points are more likely to occur than in other SCF procedures.
Despite these convergence problems, such a treatment allows
calculation of static correlation in the system. The major
problem of MCSCF methods is in the initial choice of the
different electronic configurations that have to be included
for a correct study of the properties of interest. One of
the most used approaches is the complete active space self-
consistent field (CASSCF) [61]. Within this scheme, the
single-particle orbitals are partitioned into active and inactive
spaces. Active space orbitals (that have to be arbitrarily
chosen; typically, some of the highest occupied and the lowest
unoccupied orbitals) undergo a full-CI cycle, and are then
included in an MCSCF optimization. The most complex
multiconfigurational method is the so-called multi-reference
configuration interaction (MRCI), which consists of writing
a CI expansion starting from a MCSCF wavefunction, rather
than a single HF determinant.

2.1.3. Coupled cluster. Let us define an excitation operator T
as:

T = T1 + T2 + · · · + Tn + . . . . (5)

This operator is such that any Ti acts on an HF-
reference determinant �0, to generate all possible i th excited
determinants:

T1�0 =
occ∑

i

vir∑

a

ta
i �

a
i

T2�0 =
occ∑

i< j

vir∑

a<b

�ab
i j tab

i j

(6)

where �a
i defines a singly excited Hartree–Fock determinant,

�ab
i j a doubly excited one and so on.

From this definition, the CI wavefunction can be rewritten
as:

�CI = (1 + T )�0. (7)

In coupled-cluster theory (CC), the optimized CC
wavefunction is instead derived starting from the definition of
the operator eT :

eT = 1 + T + 1

2
T 2 + 1

6
T 3 · · · =

∑

i

1

i !T i . (8)

The operator eT can be applied to �0 to produce the CC
wavefunction �CC:

�CC = eT�0 =
[

1 + T1 + (
T2 + 1

2 T 2
1

)

+
(

T3 + T2T1 + 1

3!T 3
1

)
+ · · ·

]
�0. (9)

The Schrödinger equation for the CC wavefunction reads:

H eT�0 = ECCeT�0. (10)

Solution of equation (10) can be obtained by projecting the
reference HF determinant on both sides of the equation. This
operation leads to:

〈�0|H |�CC〉 = ECC 〈�0|�CC〉
〈
�0|H eT |�0

〉 = ECC 〈�0|1 + T1 + · · · |�0〉
ECC = 〈

�0|H eT |�0
〉
.

(11)

From the orthogonality properties of the HF orbitals, and
from the fact that the Hamiltonian operator contains only one-
or two-body interactions, equation (11) simplifies into:

ECC = E0 +
occ∑

i

vir∑

a

ta
i

〈
�0|H |�a

i

〉

+
occ∑

i j

vir∑

ab

(
tab
i j + ta

i tb
j − tb

i ta
j

) 〈
�0|H |�ab

i j

〉
(12)

where E0 is the Hartree–Fock energy, indices (i, j ) run over
occupied orbitals and indices (a, b) over virtual ones. The first
sum in equation (12) contains single-excitation determinants,
and therefore is zero for the Brillouin theorem, while the
second elements correspond to two-electron Coulomb integrals
over HF molecular orbitals. Therefore, equation (12) can be
reduced to:

ECC = E0 +
occ∑

i< j

vir∑

a<b

(tab
i j + ta

i tb
j − tb

i ta
j )

×
(

〈ϕiϕ j | 1

r12
|ϕaϕb〉 − 〈ϕiϕ j | 1

r12
|ϕbϕa〉

)
(13)

where ϕ are single electron molecular orbitals. It results in the
CC energy being the HF energy plus a correlation contribution,
which arises entirely from the coefficients of single and double
excitations and from two-electron integrals.

The coefficients of the CC expansion are derived with a
procedure similar to the one applied for the energy. In fact, by
multiplying equation (10) by a singly excited determinant �l

k ,
and expanding the exponential operator, one gets:
〈
�l

k

∣∣H eT
∣∣�0

〉 = Ecc
〈
�l

k

∣∣eT
∣∣�0

〉

〈
�l

k |H (1 + T1 + T2 + · · ·)|�0
〉 = 〈

�l
k |T1|�0

〉 (14)

〈
�l

k |H T1|�0
〉 + 〈

�l
k |H T2|�0

〉 + 1
2

〈
�l

k

∣∣H T 2
1

∣∣�0
〉

+ 〈
�l

k |H T3|�0
〉 + 〈

�l
k |H T1T2|�0

〉

+ 1
6

〈
�l

k

∣∣H eT 3
1

∣∣�0
〉 = Ecc

〈
�l

k |T1|�0
〉
. (15)

Due to orthogonality of Slater determinants, all other
contributing integrals that should appear in the expansion are
zero. These terms form a set of coupled equations which
link single-excitation coefficients to single, double, and triple
ones. Therefore, although triple-excitation coefficients do not
appear in the expression for the CC energy (see equation (13)),
they are required to solve equations for the single excitations.
Similar procedures have to be applied to generate higher-order
coefficients.
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These expressions, although formally exact, have to be
truncated for obvious computational reasons. This is done by
reducing the operator T to a limited number of excitations.
Defining T ≈ T1 does not lead to any improvement of
the HF energy, as matrix elements between HF and singly
excited orbitals are zero. Therefore, the first approximation
for CC typically used is T ≈ T1 + T2. Such truncation,
known as CCSD (coupled-cluster singles and doubles), already
scales as N8, and therefore signs the limit for average-size
molecules. Possible methods to improve CC results, broadly
used nowadays, are to include higher-order excitation in a
perturbative scheme. Such methods are typically indicated as
CCSD(T) or CCSD(TQ) (according to which excitations are
introduced by perturbation theory) [62].

2.2. Density functional based methods

Density functional theory (DFT) and time-dependent density
functional theory (TDDFT) aim at solving the many-body
problem in terms of the one-particle electronic density
alone instead of the more complex many-body wavefunction
�(r1, . . . , rN ). The seminal paper of Hohenberg and
Kohn [63] in 1964 and the subsequent work of Kohn and Sham
(KS) [64] in 1965 lay the foundations for DFT. For a detailed
review on DFT see, for example, [65]. The generalization of
DFT to arbitrary time-dependent systems was given by Runge
and Gross [66] in 1984, and opened the way towards time-
dependent DFT calculations; reviews of this theory can be
found in [67–69].

2.2.1. Density functional theory. DFT is based on the
Hohenberg–Kohn theorem which asserts that all the ground
state properties of an interacting electronic system, including
the total energy E , can be expressed as unique functionals of
the electronic density alone:

E[n(r)] = F[n] +
∫

dr Vext(r)n(r) � EGS (16)

where EGS is the ground state energy of the system, and
F[n] = T + Vee is a universal functional that contains the
contribution of the kinetic (T ) and electron–electron (Vee) part
of the Hamiltonian. A scheme for resolving this problem was
presented by Kohn and Sham [64], who introduced a fictitious
non-interacting system of particles having the same electronic
density as the real system. Within this single-particle scheme,
they obtained a set of self-consistent single-particle equations:

[− 1
2∇2 + Vext + VH + Vxc]φi(r) = εiφi(r) (17)

where Vxc is the exchange and correlation potential, VH is the
Hartree potential and

n(r) =
∑

i

fi |φi(r)|2 (18)

with fi being the occupation number of the state i . Although
in principle exact, the functional form of the exchange and
correlation potential is unknown and, therefore, it has to be
approximated.

Different kinds of approximations for the exchange
and correlation (xc) functional, based on density alone
(local density approximation (LDA)) [64], density gradients
(generalized gradient approximation (GGA)) [70–75], hybrid
exact-exchange [76], or kinetic energy [77] are typically used.

Special care has to be taken in the choice of the xc-
functional when dealing with the energetic of hydrogen-
bonded systems [78, 79]. Moreover, nowadays DFT exchange
and correlation functionals fail in accurately describing van
der Waals interactions. New important developments have
appeared in the literature (see, for example, [80–86]), leading
to promising results.

2.2.2. Time-dependent density functional theory (TDDFT).
Considering a time-dependent Hamiltonian H (t) = T +
Vext(t) + Ve−e, the system will be described by a time-
dependent Schrödinger equation

H (t)�(t) = i
∂

∂ t
�(t), with initial state �(t0) = �0.

(19)

In analogy with the Hohenberg–Kohn–Sham theory, it
can be shown that an invertible map between the time-
dependent external potential and the electronic density n(r, t)
exists up to an additive purely time-dependent function, c(t),
in the potential. At the same time, the time-dependent
wavefunctions are unique functionals of the density, up to a
purely time-dependent phase which cancels out when taking
the expectation value of an operator. Moreover, instead
of searching for the exact ground state density through the
variational minimization of the total energy (as in DFT),
in TDDFT the time-dependent Schrödinger equation (19)
corresponds to a stationary point of the action integral A
(functional of the density):

A[n] =
∫ t1

t0

dt〈�(t)|i ∂
∂ t

− H (t)|�(t)〉. (20)

The last analogy between stationary and time-dependent
DFT concerns the introduction of an auxiliary non-interacting
particle system having the same density as the interacting one;
this leads to the following equation:
[

i
∂

∂ t
+ 1

2
∇2

]
φ(r, t) = Veff(r, t)φi (r, t) with

n(r, t) =
occ∑

i

φ∗
i (r, t)φi (r, t), (21)

where the effective potential contains an exchange and
correlation contribution Vxc(r, t).

In time-dependent linear response theory, the response
function χ (which measures the degree to which the density
responds to first order in the external potential) satisfies the
Dyson-like equation:

χ(r, r′, ω) = χ0(r, r′, ω)

+
∫

dr1 dr2χ0(r, r1, ω)K (r1, r2, ω)χ(r2, r′, ω) (22)
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with K (r1, r2, ω) = V (r1, r2) + fxc(r1, r2, ω) where V is
the Coulomb potential and fxc is the exchange and correlation
kernel, defined as

fxc(r, r′, t, t ′) = δVxc(r, t)

δn(r′, t ′)
. (23)

The exchange–correlation potential is unknown, hence
fxc has to be approximated in some way. Incidentally,
putting fxc = 0 in equation (22) corresponds to performing
a random phase approximation (RPA) calculation. A
common approximation for fxc is the adiabatic local density
approximation (ALDA, often called TDLDA) which considers
fxc as the functional derivative of the static LDA exchange and
correlation potential. It has turned out that TDLDA often yields
good optical spectra for finite systems (see for example [87])
but fails to describe solids (where no improvement with
respect to a standard RPA calculation is found, see for
example [88–91]), surfaces [92], molecular chains [93], liquid
water [94], molecular solids [95] and, in general, extended
systems. This is due to the wrong asymptotic behavior of
the ALDA kernel [96]. Several attempts to go beyond a local
scheme have been proposed in recent years and a great deal of
effort has been devoted towards finding efficient and reliable
non-local (in space and in time) approximations (for a review,
see for example [97]).

2.3. Green’s function based methods

Green’s function theory is particularly suitable for studying
excited state properties and hence for interpreting or predicting
spectroscopic experimental results. Details of the theory can
be found, for example, in [69, 98].

2.3.1. Quasi-particle equations. In the Lehmann represen-
tation, it can be shown that the poles of the Green’s function
are the electron addition and removal energies, that is, the
energy levels of unoccupied and occupied states, respectively,
as measured for example in inverse and direct photoemission
experiments. For practical calculations, a single-particle-like
framework is regained by introducing the concept of quasi-
particles (QP) which can be thought of as real particles plus
a polarization cloud, due to electron–hole pairs, surrounding
them and screening the mutual interaction. The difference
between ‘bare’ particles (subject only to the Hartree potential)
and quasi-particles can be accounted for by the self-energy
operator � which is a non-local, non-Hermitian, energy-
dependent operator.

A Schrödinger-like equation for the QP can be written:

H0(r)ψn(r, ω)+
∫

dr′�(r, r′, ω)ψn(r′, ω)

= En(ω)ψn(r, ω), (24)
where H0(r) = − 1

2∇2
r + Vext(r) + VH (r); an adequate

expression for � has to be found.

2.3.2. GW approximation. It can be shown that the QP
equation is equivalent to a Dyson-like equation for the Green’s
function:

G(1, 2) = G0(1, 2)+
∫

d(34) G0(1, 3)�(3, 4)G(4, 2).

This is the first equation of a closed set of five equations
proposed by Hedin [99, 100], the others being:

�(1, 2) = i
∫

d(34) G(1, 3)(3, 2, 4)W (4, 1+);

W (1, 2) = V (1, 2)+
∫

d(34) W (1, 3)P(3, 4)V (4, 2);

P(1, 2) = −i
∫

d(34) G(1, 3)G(4, 1+)(3, 4, 2);
(1, 2, 3) = δ(1, 2)δ(1, 3)

+
∫

d(4567)
δ�(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)(6, 7, 3);

where 1+ stands for (r1, σ1, t1 + δ) and δ is an infinitesimal
positive number. This set of equations also involves the
time ordered polarization operator P(1, 2), the dynamical
screened Coulomb interaction W (1, 2) and the vertex function
(1, 2, 3). These equations must be solved self-consistently
to obtain the exact solution, a procedure that is practically
impossible for realistic systems and hence some simplifications
have to be found. The simplest approximation consists of
starting with a non-interacting system with� = 0; in this case
G = G0, the vertex correction is neglected and P(1, 2) =
−iG0(1, 2)G0(2, 1). Hence the self-energy becomes

�(1, 2) = iG0(1, 2)W0(2, 1+). (25)

This is the so-called GW approximation. In principle more
iterations should be performed but calculations usually stop at
this first step (one-shot GW), and obtain quite accurate results
for one-particle excitations. Furthermore, the underestimation
of the band gap, a peculiarity of DFT, is usually removed.

2.3.3. Bethe–Salpeter equation. With regards to absorption
spectra, it is important to take into account the interactions
between holes and electrons by means of the inclusion of
vertex corrections. This can be achieved through a second
iteration of Hedin’s equations, which gives for the vertex the
expression

(123) = δ(12)δ(13)

+ iW (1+2)
∫

d(67)G(16)G(72)(673). (26)

This equation can be transformed into an integral equation for a
four-point generalized polarizability by introducing four-point
quantities, i.e. 4 P(1234), 4W (1234) = W (12)δ(13)δ(24) and
4 P0(1234) = P0(12)δ(13)δ(24). The Bethe–Salpeter equation
for the polarizability can then be derived and gives:

4 P = 4 P0 + 4 P0 K 4 P. (27)

The kernel K is made of two terms: an electron–hole exchange
contribution involving the bare potential V , and the electron–
hole attraction due to the screened potential W , i.e.

K (1234) = δ(12)δ(34)V (13)− δ(13)δ(24)W (12). (28)

In practical calculations, an effective two-particle excitonic
Hamiltonian is constructed. The eigenfunctions and
eigenvalues of this Hamiltonian build up the absorption

5
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spectrum. The neutral excited states of the system are now
represented as a linear combination of electron–hole couples
and the position and shape of the absorption spectrum are
deeply modified with respect to the independent quasi-particle
spectrum. Details of its derivation can be found in [69].

It is very interesting to notice that the Bethe–Salpeter and
the TDDFT equation can be put on the same footing, since both
can be schematically written in a Dyson-like form:

S = S0 + S0 K S. (29)

The similarity is only formal, since S is a two-point
polarizability χ(12) in the TDDFT case, or a four-point
generalized polarizability P(1234) in the case of the BSE.
Moreover, S0 is the Kohn–Sham independent particle response
function χ0 in the TDDFT scheme, whereas in the many-
body approach it represents the independent quasi-particle
response function (calculated using quasi-particle, hence GW,
eigenvalues). Finally, the kernels K are obviously different
since one contains the fxc TDDFT kernel whereas, in the
BSE case, the screened interaction W appears. This formal
similarity is important, and it has been at the basis of several
theoretical developments in the search of a TDDFT kernel
based on the many-body perturbation approach [88–90].

2.4. Hybrid methods (QM/MM)

Wavefunction based methods for the solution of the many-
electron problem typically make use of localized basis sets
(e.g. Gaussians). Therefore, they are intrinsically suited
to the study of finite-size molecular systems, rather than
to the study of extended moieties, such as compounds in
any condensed phase, and hence necessary approximations
have to be introduced. After the first pioneering works
in the field [101, 102], in the last years hybrid quantum
mechanics/molecular mechanics (QM/MM) models have been
successfully implemented and used to study a variety of
molecular systems in the condensed phase, from molecules in
solution to active sites in proteins to surfaces.

QM/MM models are based on an ad hoc partitioning of the
system of interest into two regions, each studied at a different
level of theory. The QM region is treated at the quantum level
of theory, while the MM region, typically much larger than the
QM one, is described by a simpler parameterized Hamiltonian.

Formally, the QM/MM Hamiltonian is written as:

H = HQM + HMM + HQM/MM (30)

where HQM and HMM are the Hamiltonians of the QM
and MM regions, respectively, and HQM/MM is the term
needed to consider the interactions between the QM and
the MM parts. The HQM/MM term can take different forms
according to the coupling method adopted (e.g. subtractive
molecular embedding [103, 104], or additive full-Hamiltonian
schemes [105]), and to the various QM approaches used to
describe the QM region.

QM/MM protocols present in the papers discussed in
this review comprise: (i) additive methods for coupled-
cluster (CC) [106], and multiconfigurational self-consistent-
field calculations [107], (ii) polarizable force-fields, discrete

reaction field and frozen-density embedding schemes coupled
to time-dependent density-functional-theory (TDDFT) [108],
or (iii) perturbative methods applied to different QM
calculations (TDDFT, CC, (CASSCF)) [109].

3. The structure of liquid water

Calculations of excited state properties of liquid water
obviously require, as initial input, the structure of the liquid
itself. A vast series of experimental data on water, probing
structural, thermodynamic and dynamical properties, points
at a tetrahedral hydrogen-bonding network as the reliable
structure of liquid water [110]. This structure has been broadly
confirmed both by classical molecular dynamics [111–114]
and by first-principles [21, 22, 115] simulations. However,
recent x-ray absorption spectroscopy (XAS) experiments
have challenged such structure. In fact, based on these
experiments, Wernet et al [1] proposed a model for liquid
water where each water molecule has only two H-bonded
first neighbors, resulting in a hydrogen-bonding network
that replaces the tetrahedral structure with chains of water
molecules instead [1, 8]. Such structures, to date, have not
been reproduced by any dynamical model of liquid water, and
have been questioned by a series of works (see, e.g. [6, 9–11]).
The debate about these experiments in particular [12–15], and
more broadly, about the structure of water, is ongoing and still
a very hot topic in the community. Although a very fascinating
subject, it is outside the subject of the present review, devoted
to the excited state properties of water, and therefore we shall
not discuss it further.

4. Molecular properties

In the presence of an electrostatic field, the energy of a
molecule can be expanded in terms that contain the multipolar
moments, dipole polarizability, and the first-and higher-order
hyperpolarizabilities. Most of these terms have not been
determined experimentally for liquid water. Therefore, reliable
computational predictions for these terms are needed in order
to study general phenomena involving linear response to any
kind of electric/electronic perturbation. Here we review the
most recent studies on both static ground state and electrical
response properties of water.

4.1. Multipole moments

The dipole moment of water was inferred from a series of
experimental studies both for the isolated molecule and in
solution. In particular, the dipole of the isolated water molecule
was determined from Stark effect measurements [116]
and more recently by molecular beam electric resonance
spectroscopy [117] yielding a value of 1.855 D, while the
dipole in the full liquid environment increases to ≈2.4–
2.6 D [118]. Such a change in the dipole intensity, moving
from the gas to the condensed phase, must be related to the
polarization of the water molecules, and has been the object of
different theoretical studies in the last twenty years. Predicted
values of the dipole moment are quite robust and independent
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of the level of theory used. In particular, full ab initio [22]
and QM/MM [119] molecular dynamics simulations based on
GGA/DFT reported a value of 2.7 D, the exact value being
strongly dependent on the instantaneous configuration of the
water molecules. A more recent joint experimental–theoretical
work [120] (MP2/aug-cc-VDZ level of description) on water
clusters showed that the water dipole already reaches the
typical value of the condensed phase for the (H2O)6 species.
Batista et al [121] worked on water clusters and ice Ih, and
pointed out the importance of choosing correct schemes for
charge density partitioning to get reliable results.

Gubskaya and Kusalik [122] determined dipole and
quadrupole moments using a mean-field approach, where the
effect of the solvent surrounding one single quantum water
molecule (treated at MP2/MP4 level of theory) is modeled by a
local electric field. The nature of this local field is determined
by average distributions obtained from MD simulations. The
dipole moment reported in their work is in agreement with
the experiment. They report the diagonal elements of the
quadrupole moment, finding some discrepancies depending on
the level of theory (MP2 or MP4), and on the different mean-
fields applied to the quantum water.

In more recent years, theoretical investigations made use
of hybrid QM/MM methods to determine both the dipole
moment and the higher-order quadrupole tensor. A series of
works by Mikkelsen and co-workers [107, 123] have accurately
studied the effect of the environment around the QM portion,
showing that more accurate results require the inclusion of
explicit polarization terms in the Hamiltonian describing the
MM part. Specifically, they found that a non-polarizable
description of the MM portion leads to an underestimation
of the dipole moment of about 9%, while the shift in the
dipole moment from gas to liquid phase is underestimated by
about 29%. Inclusion of explicit polarization terms in the MM
Hamiltonian leads to values closer to experiment and former
theoretical predictions. They reported values of 2.74 D for a
CCSD(aug-cc-pVQZ) description in the QM part and 2.71 D
for MCSCF(aug-cc-pVQZ).

Jensen and co-workers have used a discrete solvent
reaction field model combined with DFT [108, 124]. Their
results are in agreement with those of Mikkelsen, showing that
the total dipole moment of liquid water in hybrid models is well
reproduced only if a polarization term is included in the MM
part. Interestingly, Jensen et al showed that the dipole moment
of water can be reproduced in good agreement with CCSD
results using a LDA xc-functional [108]. The same groups
reported values for the diagonal elements [123, 124] and the
full quadrupole tensor [125]. In all these calculations, the water
molecule in the QM part is placed in the xz plane with the
oxygen at the origin and the z axis bisecting the HOH angle.
Unlike the dipole, the quadrupole of liquid water has not been
determined experimentally. However, these sets of calculations
report similar values for the diagonal quadrupole elements:
Qxx = 2.08 au [124], 2.09 au [125], Qyy = −2.17 au [124],
−2.16 au [125], and Qzz = 0.08 au [124, 125].

4.2. Polarizability

The static mean dipole polarizability (ᾱ) of water in vacuo
is known from dipole oscillator strength distribution experi-
ments [126]. First (β) and second (γ ) hyperpolarizabilities can
be derived from Kerr effect measurements and the electric field
induced second harmonic generation technique (ESHG), and
were reported by Ward and Miller [127] and more recently by
Kaatz et al [128].

No experimental data are available for ᾱ of liquid water,
while β̄ and γ̄ were derived by Levine and Bethea via ESHG
experiments [129]. Water polarizabilities in gaseous clusters
were studied in the late 1990s by Otto et al [130] by means
of coupled Hartree–Fock calculations, and by Rodriguez et al
[131] via DFT calculations. An extensive study of the full
(static) α, β, γ tensors of the water dimer has been proposed by
Maroulis [132]. In his work, he studied the convergence of the
values of these tensors from different methodologies (from HF,
to MP2/MP4, to CCSD(T)), different basis sets, and relaxation
of the molecular structure. He found that hyperpolarizability
tensors are strongly dependent on electron-correlation effects,
while the water geometry does not influence the results so
much. He also found that Møller–Plessett expansions perform
reasonably well, as compared to more expensive CCSD(T)
calculations.

Gubskaya and Kusalik’s mean-field approach [122] to
simulate the condensed phase condition reports only a small
variation of the value of ᾱ with respect to the in vacuo situation,
while they observe a dramatic increase for β̄ and γ̄—reporting
also a change in sign for β̄—in agreement with experiment.

The two parallel series of works by Mikkelsen,
Christiansen, and co-workers [107, 125, 133–138] and
Jensen and co-workers [108, 124, 139, 140] investigated
the full dynamical α(ω) polarizability and the β(ω), γ (ω)
hyperpolarizabilities by QM/MM techniques. In particular,
in [136] different CC calculations for the QM part
(CC2, CCSD) were tested, using different MM schemes:
the dielectric continuum (DC) approach, and the explicit
consideration of the water molecules described by a non-
polarizable or a polarizable force field. The authors found that
CC2 calculations overestimate the second hyperpolarizability
in vacuo, confirming that γ is strongly affected by electron-
correlation effects, while DC models are extremely sensitive
to the radius of the cavity into which the water molecule is
placed. In their most recent works, the authors have also
proposed linear response functions to allow accurate analytical
calculations of vibrational contributions to polarizability [138].
Moreover, they extended their CC/MM model to include
calculation of statistical averaged quantities [125], finding that
the first hyperpolarizability converges slowly and, therefore,
requires a more careful sampling with respect to other
quantities.

The series of works by Jensen and co-workers
[108, 124, 139, 140] also point out the strong influence on
the results by the level of description of the MM embedding
environment. In particular reference [124], points out the
strong differences obtained in the polarizability by using a
frozen-density embedding or a discrete reaction field model.
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Figure 1. Electronic density of states of liquid water from [144]
(upper panel) and from [115] (lower panel).

A recent work by Sonoda et al [141] used QM/MM
simulations coupling MP2(6-311++G(d, p)) to the SPC/E
water model [111] to study the polarizability anisotropy of
liquid water. Their calculations managed to reproduce the main
features of the experimental frequencies obtained from Kerr
effect spectroscopy, but failed to reproduce the experimental
band near 60 cm−1.

Despite the promising results described in this
section, it seems that the major problem in calculating
(hyper)polarizabilities employing QM/MM schemes relies on
artifacts generated by the QM/MM interface, especially when
using one single water molecule in the QM part. Efforts in
characterizing and limiting such undesired effects, e.g. using
a larger QM region (for example, one water molecule plus its
hydrogen-bonded neighbors) are desired in the near future.

5. Electronic properties

The electronic properties of water, like the density of states and
the electronic ‘band structure’, are extremely interesting and
have been the subject of numerous studies. Experimentally, the
electronic gap of water has been derived from measurements
of the photoionization potential and of the conduction
band minimum energy (related to the electron affinity) in
photospectroscopy experiments and through the measurements
of the magneto-optical interband Faraday rotation [142].
Several theoretical works concerning these properties are also
reported in the literature and will be discussed in the following
subsection.

5.1. Density of states

The electronic density of states (DoS) of liquid water has
been calculated in several theoretical works based on ab initio
molecular dynamics simulations and DFT [115, 143, 144].

Figure 2. Electronic joint density of states of liquid water for
supercells with 17 molecules (red continuous line) and with 32
molecules (black dashed line), from [144].

In [115], DFT-GGA calculations were performed for
various water configurations analyzing the convergence of the
DoS with respect to the system size and the k-point sampling.
For a liquid disordered system increasing the cell size or
the number of k-points is not equivalent since there is no
periodicity; the more accurate approach would be to use just
the  point together with a huge unit cell but this strategy
is computationally not feasible. In [115], the DoS of a
large supercell with 256 water molecules, computed at the
 point, is found to be in good agreement with the results
obtained for a 32 molecule supercell, using eight k-points.
Also in [144] the DoSs of liquid water were calculated within
DFT-GGA using configurations with 32 molecules obtained
from classical molecular dynamics simulations and a Brillouin
zone (BZ) sampling of eight k-points. The results of these
two calculations (which are in very good agreement with each
other) are reported in figure 1.

In both works [115, 144], the electronic joint density of
states (JDoS) was also computed for different cell sizes and
k-point samplings. The JDoS is a very interesting quantity
that gives a first indication of the optical absorption spectrum
since it considers all the electronic transitions from unoccupied
to occupied states; hence it represents a convolution of the
valence and conduction density of states. In figure 2 the JDoS
of liquid water is reported for two sizes of the supercell: 17
and 32 water molecules. The two curves are quite similar
since, as expected, the JDoS (and hence the optical absorption
spectrum) is less sensitive to the system size.

Finally, we mention the work of Boero et al [18]
where Car–Parrinello molecular dynamics simulations were
performed for a hydrated electron in normal and supercritical
water and the relative electronic densities of states are reported.

5.2. Electronic energy levels

The experimental electronic gap of liquid water (that is,
the difference between the ionization potential and electron
affinity) has been estimated to be about 8.7 ± 0.5 eV (see for a
detailed review [145, 146] and references therein).

From a theoretical point of view, the electronic
‘band structure’ of liquid water has been investigated
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Table 1. Calculated electronic gaps of various phases of water. The
experimental electronic gap of liquid water is 8.7 ± 0.5 eV
[145, 146].

Monomer Liquid Ice Ic Ice Ih

DFT 6.7 eV [22] 4.33 eV [115] 6 eV [148] 5.6 eV [149]
6.3 eV [152] 5.09 eV [94]
6.16 eV [6]

GW 12.5 eV [152] 8.6 eV [94] 10.1 eV [149]
8.7 eV [153]

in detail within DFT-GGA in several works (see for
example [22, 94, 115, 144]).

The seminal paper of Laasonen et al [22] has shown that,
for liquid water, the DFT gap is 4.6 eV, to be compared with the
DFT highest occupied molecular orbital–lowest unoccupied
molecular orbital (HOMO–LUMO) gap of the monomer (that
approximately describes the vapor phase) of 6.7 eV.

The band structure of ice has also been calculated within
tight-binding [53, 54, 147], DFT [148, 149], and with the R-
matrix method [150]. The DFT gap of cubic and hexagonal
ice has been evaluated to be 6.0 and 5.6 eV, respectively,
i.e. intermediate between liquid and vapor phase.

The difficulty of DFT to quantitatively describe the
electronic band structure is well known, as is the fact that
DFT electronic gaps, and in general all the DFT single-particle
transition energies, heavily underestimate the experimental
ones.

The GW approach generally corrects this underestimation
(see for example [69, 151]). Recently, GW calculations on
liquid water [94, 144], and approximated GW on hexagonal
ice [149] and on the monomer [152] have appeared in the
literature.

The theoretical values of the electronic gaps of the various
phases of water are reported in table 1.

Hydroperoxyl (HO2) and hydronium (H3O) radicals
have also been considered, for example, in [19] and [154]
respectively.

6. Spectroscopic properties

In absorption experiments, light strikes matter and excites an
electron from a valence state to a conduction level; therefore
there is no change in the total number of electrons: the excited
electron remains inside the system and interacts with the
corresponding hole. Hence the two particles cannot be treated
separately and the joint density of states must be considered.
In electron energy loss experiments (EELS) electrons impinge
on the sample and lose their energy by exciting electron–hole
pairs, plasmons, and other high-order multipair excitations.

The response of a material to radiation is mainly analyzed
through its oscillator strength distribution as a function of
the probe energy. Different properties of the material, such
as reflectance and the optical constants in general, can be
obtained from such a distribution. Inelastic x-ray scattering
spectroscopy, using hard x-ray radiation, can be used to
describe the EEL and, provided that the momentum transfer
can be approximated to zero [155], to derive the optical spectra
of materials.
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Figure 3. Real part of the electronic dielectric constant ε1.
(a) experimental [158] curve; (b) theoretical [144] curves within DFT
(black dashed line) and GW (red continuous line).

Despite decades of efforts, the excited state spectra of
liquid water and the influence of solvation on these spectra
are still not well understood. In experiments, unlike in vacuo
UV spectroscopy, the measurement of the absorption spectra of
volatile liquids, including water, presents some difficulties. In
theoretical calculations, the foremost difficulty is in the choice
of an appropriate model for a liquid disordered system that is
able to properly include the solvent electronic description and
a correct statistical average of the properties of interest.

6.1. Dielectric constant

Optical constants of water (liquid, ice, vapor) have been mea-
sured from the far infrared to the high ultraviolet [156–165].
The refraction index ñ and dielectric function ε̃ = ε1 + iε2 =
ñ2 of liquid water are usually extracted by Kramers–Kronig
analyses of reflectance measurements. As an example, we
show in figure 3(a) the experimental ε1(ω) for liquid water by
Heller et al [158].

In the following sections, we will describe in detail the ex-
perimental and calculated absorption spectra (related to ε2(ω))
of liquid water. Here, we restrict ourselves to the analysis of
the electronic dielectric constant ε∞. Theoretical calculations
have been performed within DFT [144], the PPC model [166],
the generalized reaction field model of Onsager and discrete
local-field theories [167], CASSCF [168], and many-body
perturbation theory in the GW approximation [144]. Some of
the results present in the literature are reported in table 2.

We see from table 2 that, as expected, DFT overestimates
the dielectric constant. This is a direct consequence of the
DFT underestimation of the transition energies, as is clear
from a comparison of the experimental and DFT spectra (see
figure 3). The inclusion of local-field effects slightly reduces
the discrepancy with experiment (see table 2). A better
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Table 2. Calculated dielectric constant ε∞. The experimental value,
measured at ω = 1 eV, is εexp

∞ = 1.78 [158].

Theor. method Theor. value

PPC [166] 1.25
RF [167] ∼1.69
DFT [144] 2.2
DFT + LF [144] 2.0
DFT + LF [153] 1.72
GW [144] 1.91
CASSCF [168] 1.56 (1.69)

agreement with the experimental value is found within GW,
and with more approximate approaches as in [167, 168].

6.2. Optical absorption

The first optical absorption experiments on water date back
to the 1960s and 1970s [48, 158–160, 169]. In these
works the dielectric constants of water, and hence its optical
absorption spectrum, were deduced from Kramers–Kronig
analyses of reflectance measurements. Other ultraviolet
absorption experiments on liquid water were performed in
those years, for example in [156, 170–172]. More recently, the
optical spectrum of water has been measured by low resolution
dipole spectroscopy [173] and by inelastic x-ray scattering
spectroscopy [155, 174] at low momentum transfer. Examples
of these experimental spectra are shown in figure 4, whereas a
closer examination of the low energy region, where excitonic
effects are more important, is in figure 5.

The optical absorption spectra of solid water (ice)
[163, 169, 175, 176] and of isolated water molecules
(vapor) [177–180] or clusters [181] have also been measured.

The spectrum of gas phase water has the first maximum
of absorption at 7.4 eV and a second broad band with a
maximum at 9.7 eV. At higher energies, many sharper peaks,
corresponding to Rydberg transitions, appear. In the condensed
phases (liquid water and ice), the sharp Rydberg transitions are
not found, while, in the low energy region up to 11 eV, the two
broad absorption bands are still present, but blue-shifted with
respect to the corresponding bands in the gas phase. In liquid
water, the one-photon absorption spectrum shows the first peak
at about 8.2 eV, and a second maximum around 9.9 eV. In
ice, the first two broad maxima are further shifted to 8.7 and
10.4 eV, respectively. Another characteristic of the liquid water
absorption spectrum is the Urbach tail (a long tail present on
the red edge of the first band) that is still an object of debate.

The optical absorption spectrum of liquid water has been
intensively investigated by theoretical studies. Numerous
calculations, performed with different methods and strategies,
are present in the literature. The earliest papers on the subject
date back to the last century [49, 182–184] and are reviewed
in [145, 146]. More recently, several theoretical calculations
concerning the vertical excitation energies of liquid water have
been reported.

Many of the most recent works consist of QM/MM
calculations with one water molecule treated at the quantum
level and many others (more than one hundred) treated
classically. Within this approach, different combinations of

Figure 4. Experimental optical absorption spectra of liquid water
from [160] (blue circles), [159] (red stars), [158] (black diamonds),
[155] (green squares).

Figure 5. Experimental optical absorption spectra of liquid water
from [160] (blue circles), [159] (red stars), [158] (black diamonds),
[155] (green squares).

quantum and classical methods can be found; in particular
the quantum part has been treated with coupled-cluster
theory [109, 125, 133, 135, 185, 186], the multiconfigu-
rational self-consistent-field method [107], DFT [124] and
TDDFT [109, 139]. Results obtained with these hybrid
QM/MM schemes strongly depend on the details of the calcu-
lations: exchange and correlation potentials for both static and
time-dependent DFT, basis sets, accuracy in the description
of the classical water molecules (continuum models, point
charges, polarizable force-fields), or level of approximation in
the CC expansion. On average, they present errors in the first
few vertical excitation energies within 1 eV with respect to the
experimental values.

A different strategy has been followed by Bursulaya and
co-workers in [187] where the first photoabsorption band of
liquid water is studied by molecular dynamics simulations. In
particular they analyze the influence of solvation on the liquid
water absorption spectrum with respect to the gas phase. Their
results reproduce the main characteristic of the first peak which
is found at 8.25 eV, blue-shifted by about 0.5 eV with respect
to the lower transition of the vapor and with an extended red
tail at lower energies.

10



J. Phys.: Condens. Matter 21 (2009) 033101 Topical Review

Figure 6. TDDFT imaginary part of the dielectric function,
from [188].

In [188], the linear response of liquid water is examined
through the use of TD-GGA. The liquid system is modeled
by one periodically repeated cubic box containing 32 water
molecules, with the same density of liquid water at ambient
conditions. The electronic properties of water are computed
using a real-time propagation scheme for the solution of
the TDDFT equations. The imaginary part of the dielectric
function, shown in figure 6, is obtained in a wide range
of energies. The overall agreement between these results
and the experimental absorption spectra is good, especially
considering the small number of water molecules considered
in the calculation; however, focusing on the low energy part
of the spectrum and in particular on the optical gap (onset
of the spectrum) the agreement is no longer satisfactory and
a significant redshift of the spectrum, with respect to the
experiments, is present.

Another theoretical approach for calculating the optical
absorption spectrum is given by many-body perturbation
theory, through the solution of the Bethe–Salpeter equation.
This scheme has been followed in [94]. Also in this
work the liquid system has been modeled by a periodically
repeated cubic box; however, in this case, several geometrical
configurations, each containing 17 water molecules, have
been considered and all the results are averaged over these
snapshots. In this work the optical spectrum of liquid water
has been calculated with different methods: the electronic
states have been first obtained within DFT and the relative
absorption spectrum is calculated; following this, the energy
levels have been corrected within the GW approximation to
take fully into account exchange and correlation effects; finally
the optical absorption spectrum including excitonic effects has
been calculated by solving the Bethe–Salpeter equation. These
spectra are shown in figure 7. The DFT optical spectrum
shows strong discrepancies with respect to experiment both in
the onset and in the lineshape; the overall effect of the GW
corrections is to over-shift the DFT spectrum towards higher
energies, without improving its shape. The BSE spectrum, on
the contrary, shows a significant improvement in the agreement
with experiment both in the peak positions and in the onset, as

Figure 7. Optical absorption spectrum of liquid water calculated
within DFT (solid black line), GW approximation (dotted red line),
and by solving the Bethe–Salpeter equation (dashed blue line);
from [94].

well as in the relative intensities of the first two peaks. The first
peak is attributed to a bound exciton with a binding energy of
2.4 eV and large oscillator strength. In [94], the absorption
spectrum of liquid water has also been calculated within
TDLDA showing no significant improvement with respect to
that obtained with DFT-LDA.

Recently, in [6], the optical spectrum of liquid water
has been calculated within the symmetry-adapted cluster
configuration interaction (SAC-CI), considering a single water
molecule in the electric field of surrounding liquid water.
Although this model cannot take properly into account
the delocalization of the exciton on the surrounding water
molecules, the resulting spectrum has a first peak at 8.3 eV in
very good agreement with the experimental value of 8.2 eV.
The other main structures of the spectrum are also in good
agreement with experiments.

A series of theoretical works [6, 181, 186, 189–193]
investigated the vertical excitation energies for water clusters
of increasing size. This is the case of [189], where the (H2O)n
clusters, with n = 2–6, are studied within Hartree–Fock
and second-and fourth-order perturbation theories, whereas
in [190] the same clusters have been analyzed with a semi-
empirical model. In [186] the vertical excitation energies
are calculated with the CC/MM method for the trimer and
the pentamer clusters; these clusters and the dimer have also
been studied in [191] with CI and CC methods. The optical
absorption spectra of larger clusters have been calculated
in [192] where a molecular dynamics study of (H2O)n clusters,
with n = 8,11, 20, 40, 50, within the Franck–Condon
approximation in the excitonic energy range, is presented.

All these works agree that the first excitation in the clusters
is blue-shifted with respect the water monomer and that this
blue-shift is larger with increasing cluster size.

A similar analysis has also been made in [181] where the
(H2O)n clusters and (H2O)n+1 branched clusters, with n = 2,
3, 4, 6, have been considered. Apart from the general blue-shift
of the first excitation energy with increasing number of water
molecules, they also found that this excitation energy is always
smaller in the branched structures than in the corresponding
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cyclic cluster. In [6], structurally relaxed clusters (H2O)n, with
n = 2, 3, 5, are studied within SAC-CI but, unlike the previous
cases, after increasing the cluster size, a redshift of the onset
of absorption together with a splitting of the main peaks with
respect to the monomer spectrum are found. Finally, in [193]
the water pentamer is considered in two different geometries,
the cyclic cluster and the zwitterionic form and this second
structure presents the first absorption peak shifted by more
than 1 eV toward smaller energies with respect to the cyclic
pentamer.

In some of these works [6, 186, 191] the monomer is also
examined as a reference case. Many other theoretical studies
have focused on the single H2O molecule, thus simulating
the gas phase of water. Among the earlier works where the
excited state properties of the H2O molecule are considered,
we just cite [51, 52, 194, 195]. More recently, the vertical
excitation energies of the water molecule have been calculated
within TDDFT in [196, 197] and within the Green’s function
formalism (GW-BSE) in [152]. In this last work the first three
transition energies are obtained at 7.24, 9.62, and 10.07 eV, in
very good agreement with experimental values.

The solid phase of water, ice, has been the subject of
a great number of theoretical studies too; among these we
cite the recent work of Hahn and co-workers [149] where the
optical absorption spectrum of hexagonal ice has been obtained
in the framework of many-body perturbation theory, by
including the self-energy corrections in an approximated GW
approach [198], and by treating the electron–hole interaction
by solving the Bethe–Salpeter equation. The absorption
spectrum obtained with these calculations is in good agreement
with the experimental one and presents a first peak, at about
9 eV (experimental peak at 8.6 eV), due to a bound exciton
with a binding energy of 3.2 eV.

Finally we want to mention a few works devoted to the
study of some important radicals that are related to liquid
water. The vertical excitation energies of the hydroperoxyl
radical, HO2, important for chemical reactions in the earth’s
atmosphere, are calculated in [19, 199]. The hydronium
radical H3O and the hydronium–water clusters, interesting for
understanding of the behavior of the hydrated electron, are
studied in [20, 44, 200]. Lastly, the hydroxyl radical HO that
is the primary oxidant in the troposphere and hydroxyl–water
clusters are also considered in [40, 201].

6.3. Energy loss

Energy loss spectroscopy is mainly directed at the observation
of plasmons, i.e. the collective excitations of electrons as a
response to external perturbations. The loss function is related
to the dielectric constant through the relation

loss ∝ Im

(
−1

ε

)
= ε2

ε2
1 + ε2

2

. (31)

The loss function of ice has also been measured by electron
energy loss experiments, for example in [202, 203].

Regarding liquid water, the loss function has been
obtained in [158] by optical reflectance measurements and,
more recently, in [174], from x-ray scattering experiments:
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Figure 8. Loss function of liquid water obtained with x-ray
scattering measurements for different transferred momenta: q = 0.19
(circles), q = 0.53 (stars), q = 0.69 (diamonds); from [174]. The
solid blue line is the loss function of liquid water calculated within
DFT for a transferred momentum q = 0; from [144].

in both studies the main peak is at an energy (the plasmon
frequency) of about 22 eV. The loss spectra presented in [174],
for different values of transferred momentum, are shown in
figure 8.

The energy loss spectrum of liquid water has been
calculated within TD-GGA in [188]. In this work the liquid
system was modeled by one periodically repeated cubic box
containing 32 water molecules; a value of 21.6 eV is found for
the plasmon frequency, in good agreement with experiment.

The energy loss spectrum of liquid water has also been
calculated within DFT using a box of 17 water molecules,
averaging the results over 20 MD configurations [144]. The
averaged spectrum is shown in figure 8, for a transferred
momentum q = 0. A good agreement with experiment is
reached for the peak position and lineshape even if, looking
at the onset and in general at the low energy region of the
spectrum where excitonic effects are more important, the
agreement is less satisfactory.

7. Final remarks

In recent years, the electronic properties of liquid water
have been the subject of different computational studies.
The constant increase in computational power has allowed
scientists both to improve the level of theory for the solution of
the quantum problem and to infer statistical averaging to take
better into account the properties of the liquid phase. Ground
state properties, such as the dipole moment, quadrupole tensor,
and dielectric constant have been determined with very good
accuracy with respect to the experiment.

Recently, the excited state properties of liquid water have
also been computed. These pioneering studies were able to
shed light on the main features of the water optical spectrum
in the low energy region. In spite of this, however, the large
computational costs required for these calculations still call
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for drastic approximations that limit the accuracy of the final
results. In particular, in reported papers, calculations are
typically limited to one single quantum water molecule (in
QM/MM studies), or to the first or first–second solvation shell
for periodic-cell systems.

All these studies achieve a better description of the
electronic and optical properties of liquid water, but still
miss a quantitative agreement with experiment. Specifically,
electron–hole interactions can be strongly affected by the small
system size, leading to over-binding of the excitons and to
inaccuracies in the band structures, up to several tenths of an
eV.

Development of future techniques, algorithms, and
theoretical approaches aimed at decreasing computational
costs for excited state calculations are therefore desired
for future studies on the subject. Time-dependent LDA
and GGA methods represent, at the moment, a quick and
valid alternative to many-body perturbation theory in some
small molecules and clusters, but fail heavily in describing
excitations in extended systems. New TDDFT kernels based
on many-body approaches have been successfully used in
a variety of systems [88–90, 92, 93] but do not represent,
yet, a computationally convenient alternative to a GW plus
BSE calculation, since the construction of such non-local
and frequency-dependent kernels causes an increase in the
computational effort. Promising efficient schemes have been
recently proposed [95] which could help in tackling extended
systems with a low computational effort (which characterizes
TDDFT) while still providing a precise description of many-
body effects.
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